
Making RISC-V The Most Secure Platform

Cesare Garlati, CEO Hex Five Security

Andes RISC-V Con Beijing 2019

Embedded Computing Thread Model

 MCU-based lack basic hardware security primitives like MMU & Virtual Memory

 any line of code can break the CIA Confidentiality Integrity Availability

 Linux-based have MMU & VM but can’t be trusted either

 17M+ lines of code attack surface and non-free kernel drivers

 Untrusted software: 3rd party libraries, open source, proprietary binaries

 Supply chain security: 100+ libraries in a typical IoT stack

 Secure Elements & TPM Modules: secure data at rest, can’t run programs

 Arm has TrustZone®: too complex and expensive for mainstream adoption

 RISC-V: free and open (good) but no TrustZone® at all (bad)

... while regulators increasingly mandate “isolation” built into any device

RISC-V ISA Security Building Blocks

Privilege Levels & Control and Status Registers

▪ Machine – always present, highest privilege mode

▪ Supervisor – Linux, supports MMU / virtual memory

▪ Reserved (Hypervisor) – work in progress

▪ User / Application – unprivileged lowest level

▪ Trusted Execution Environment runs at highest privilege

▪ Note: Interrupts always M mode (unless “N” implemented)

Rings Modes Intended Usage

1 M Unsecured embedded

2 M,U Secure embedded

3 M,S,U Linux

Physical Memory Protection

▪ Hardware enforced – 4 ranges * 4 config reg (if implemented)

▪ Policy R/W/X => synchronous exception mechanism (trap)

▪ Overlapping OK, ranges can be locked down

▪ Top of range (TOR) or naturally aligned power of two (NAPOT)

▪ Trusted Execution Environment manages PMP context at runtime

▪ Note: enforced per core – no ISA spec for multi-core / platform

A Name Description

1 TOR Top of range

2 NA4 Naturally aligned 4-byte

3 NAPOT Naturally aligned power of 2

MultiZone™ Trusted Execution Environment

Multiple equally secure zones for programs, data, i/o

Hardware-enforced Software-defined Policy-driven RWX

Minimal attack surface (<2KB), Formally verifiable

 It’s like TrustZone® for RISC-V

 Runs on any RISC-V core with PMP & U-Mode

 No need to modify application software or toolchain

 Use cases: TLS, secure boot, remote firmware update

MultiZone™ Secure nanoKernel – boot room

InterZone™ Secure Communications – no shared memory

Crypto
Libraries

OTA Update

Each Zone
Compiled and

Linked
Separately

Rich OS
Linux / RTOS

…

Network
Stack

Root of
Trust

Arm and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Reference Application - Secure IoT Stack

TLS 1.3 / ECCInternet

MultiZone™ Secure nanoKernel

InterZone™ Secure Communications

RTOS

[FreeRTOS]

GPIO / IRQs

Zone #1

TCP/IP

[picoTCP]

ETHERNET

Zone #2

CRYPTO

[wolfSSL]

OTP / FUSE / PUF

Zone #3

TEE Console

[MultiZone]

UART

Zone #4

ARTY FPGA - Rocket RV32 IMACU

SPI / USB

UART

Crypto

TLSv1.3, Cipher TLS_AES_128_GCM_SHA256
Peer signing digest: SHA256
Peer signature type: ECDSA
Server Temp Key: ECDH, P-256, 256 bits
Server public key is 256 bit
Private Key ASN1 OID: prime256v1
Private Key NIST CURVE: P-256

U-mode Apps

M-mode

PMP Hardware

U-mode IRQs

MultiZone™ Security – How It Works

Tick = 10 # ms

Zone = 1
irq = 16 # BTN0
base = 0x20410000; size = 64K; rwx = rx # FLASH
base = 0x80001000; size = 16K; rwx = rw # RAM
base = 0x10025000; size = 0x100; rwx = rw # PWM
base = 0x10012000; size = 0x100; rwx = rw # GPIO
base = 0x0C000000; size = 0x400000; rwx = rw # PLIC

Zone = 2
irq = 17, 18 # BTN1, BTN2
base = 0x20420000; size = 64K; rwx = rx # FLASH
base = 0x80005000; size = 16K; rwx = rw # RAM
base = 0x60000000; size = 8K; rwx = rw # XEMACLITE

Zone = 3
base = 0x20430000; size = 64K; rwx = rx # FLASH
base = 0x80009000; size = 4K; rwx = rw # RAM

Zone = 4
base = 0x20440000; size = 64K; rwx = rx # FLASH
base = 0x8000A000; size = 4K; rwx = rw # RAM
base = 0x10013000; size = 0x100; rwx = rw # UART

Patent pending US 16450826, PCT US1938774 - Configuring, Enforcing, And Monitoring Separation Of Trusted Execution Environments.

Secure
Boot

Firmware

Hex Five
Tool Chain
Extension

Zone 1
Binary

(ELF/HEX)

nanoKernel

Policies
(multizone.cfg)

Zone 2
Binary

(ELF/HEX)

Zone 3
Binary

(ELF/HEX)

Zone 4
Binary

(ELF/HEX)

MultiZone™ For Linux – Enclave Concept

App

[bare metal]

MultiZoneTM nanoKernel

MultiZone™ Secure Communications

Enclave #1

App

[bare metal]

App

[bare metal]

App

[bare metal]

PWM LED Driver

RV64 IMACU

IPC

U-mode
Enclave #2 Enclave #3 Enclave #4

Multiple statically defined enclaves – ram, rom, i/o, irq

Secure messaging with no shared mem - secure buffers for Linux IPC

Secure interrupt handlers mapped to enclaves and executed in U-mode

Trap & emulation of privileged instructions, Soft-timers, Secure boot

Linux User Land Apps

MultiZoneTM IPC

SiFive U54 (RV64 IMACFU)

4 x SMP Linux

MultiZoneTM IPC Driver Ethernet Driver

Linux User Land Apps

MultiZoneTM IPC

SiFive U54 (RV64 IMACFU)

4 x SMP Linux

MultiZoneTM IPC Driver Ethernet Driver

Linux User Land Apps

MultiZoneTM IPC

SiFive U54 (RV64 IMACFU)

4 x SMP Linux

MultiZoneTM IPC Driver Ethernet Driver

Linux User Land Apps

MultiZoneTM IPC

RV64 IMACFU

4 x SMP Linux

MultiZoneTM IPC Driver Ethernet DriverUART Driver

S-mode

M-mode

PMP HW

Hardware-enforced Software-defined Boundaries

Takeaways

▪ Embedded systems – with or without MMU -

are inherently not secure as all code can

access all data and peripherals

▪ The RISC-V ISA defines some security building

blocks including privileged modes and physical

memory protection

▪ The design complexity associated with properly

implementing security primitives often results in

them not being used at all

MultiZone™ security provides
multiple equally secure execution
environments

1

MultiZone™ provides hardware-
enforced software-defined separation
for programs data and I/O

2

MultiZone™ Security doesn’t require
additional cores, specialized IP or
changes to existing applications

3

Hex Five MultiZone™ Security
Hex Five Security, Inc. is the creator of MultiZone™ Security, the first Trusted Execution Environment for RISC-V.

Hex Five open standard technology provides software-defined hardware-enforced separation for multiple security

domains, with full isolation of data, programs and peripherals. Contrary to traditional solutions, MultiZone™ Security

requires no additional hardware or changes to existing software: open source libraries, third party binaries and legacy

code can be configured in minutes to achieve unprecedented levels of safety and security.

MultiZone™ Open Standard API – C Library

Permissive Licensing – “any purpose”

Hardware threads (zones) management

Inter zone messaging – zone0 SMP Linux

Traps & IRQs handlers registration (U-mode)

Traps & IRQs enable / disable – per zone

Hardware thread timer – per zone

Trap & emulation helpers
Read-only, selected CSRs
Completely optional – just for speed / latency

Virtual Memory (MMU) Uncomfortable Truth

Credits: Al Danial https://github.com/AlDanial/cloc, Dan Mayer's development blog https://www.mayerdan.com/ruby/2012/11/11/bugs-per-line-of-code-ratio

(a) Industry Average: "about 15 - 50 errors per 1000 lines of delivered code." He further
says this is usually representative of code that has some level of structured programming
behind it, but probably includes a mix of coding techniques.

(b) Microsoft Applications: "about 10 - 20 defects per 1000 lines of code during in-house
testing, and 0.5 defect per KLOC (KLOC IS CALLED AS 1000 lines of code) in released
product (Moore 1992)." He attributes this to a combination of code-reading techniques
and independent testing (discussed further in another chapter of his book).

(c) "Harlan Mills pioneered 'cleanroom development', a technique that has been able to
achieve rates as low as 3 defects per 1000 lines of code during in-house testing and 0.1
defect per 1000 lines of code in released product (Cobb and Mills 1990).

17,019,619 * 10-4 = 1,701 disasters waiting to happen

