REX-Five Making RISC-V The Most Secure Platform

Cesare Garlati, CEO Hex Five Security

Andes RISC-V Con Beijing 2019

Embedded Computing Thread Model

Functional
Code Blocks

e W MCU-based lack basic hardware security primitives like MMU & Virtual Memory

» any line of code can break the CIA Confidentiality Integrity Availability

Compiler

& Linker % Linux—based have MMU & VM but can’t be trusted either

= 17M+ lines of code attack surface and non—free kernel drivers

W Untrusted software: 3rd party libraries, open source, proprietary binaries

= Supply chain security: 100+ libraries in a typical loT stack

h ,
eap W Secure Elements & TPM Modules: secure data at rest, can't run programs

uninitialized data (bss)

initialized data % Arm has TrustZone®: too complex and expensive for mainstream adoption

text

& RISC-V: free and open (good) but no TrustZone® at all (bad)

... while regulators increasingly mandate “isolation” built into any device

2 HEX-Five Security

RISC-V ISA Security Building Blocks

Privilege Levels & Control and Status Registers

Machine — always present, highest privilege mode
Supervisor — Linux, supports MMU / virtual memory
Reserved (Hypervisor) — work in progress

User / Application — unprivileged lowest level

Trusted Execution Environment runs at highest privilege

Note: Interrupts always M mode (unless “N” implemented)

Rings Modes Intended Usage

1 M Unsecured embedded
2 M,U Secure embedded

3 M,S,U Linux

~ HEX-Five Security

Physical Memory Protection

Hardware enforced — 4 ranges * 4 config reg (if implemented)
Policy R/W/X => synchronous exception mechanism (trap)
Overlapping OK, ranges can be locked down

Top of range (TOR) or naturally aligned power of two (NAPOT)
Trusted Execution Environment manages PMP context at runtime

Note: enforced per core — no ISA spec for multi-core / platform

A Name Description

TOR Top of range

NA4 Naturally aligned 4-byte

W IN [

NAPOT Naturally aligned power of 2

MultiZone™ Trusted Execution Environment

Root of Network . Rich OS
Trust Stack OTA Update Linux / RTOS
Each Zone
Compiled and
Linked
Separately

Multiple equally secure zones for programs, data, i/o

Hardware—enforced Software—defined Policy—driven RWX

Minimal attack surface (<2KB), Formally verifiable

stack stack stack stack stack
" |t's like TrustZone® for RISC-V

heap heap heap heap heap .

"> Runs on any RISC-V core with PMP & U-Mode
uninitialized uninitialized uninitialized uninitialized uninitialized
data (bss) data (bss) data (bss) data (bss) data (bss)

initialized initialized initialized initialized initialized » No need to modify application software or toolchain

data data data data data

text text text text text

» Use cases: TLS, secure boot, remote firmware update

InterZone™ Secure Communications — no shared memory

MultiZone™ Secure nanoKernel— bootroom

Arm and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

@ HEX-Five Security

Reference Application — Secure |loT Stack

Zone #1 Zone #2 Zone #3 Zone #4

Crypto

RTOS TCP/IP CRYPTO TEE Console TLSv1.3, Cipher TLS_AES_128 GCM_SHA256
Peer signing digest: SHA256

Peer signature type: ECDSA
[FFEERTOS] [piCOTCP] [WO|fSSL] [MultiZone] Server Temp Key: ECDH, P-256, 256 bits
Server public key is 256 bit

Private Key ASN1 OID: prime256v1
Private Key NIST CURVE: P-256

U-mode Apps

InterZone™ Secure Communications
MultiZone™ Secure nanoKernel

PMP Hardware ARTY FPGA - Rocket RV32 IMACU

g 2
= ow w

Xaigl ;;i‘ai

@ HEX-Five Security

MultiZone ™ Security — How It Works

[multizone.cf | f— B
@ ~,feclipse—cdt—ws!hexﬁge—conf EJ -7 X Zone1
Tick = 10 # ms Binary
(ELF/HEX)
Zone =1
irq = 16 # BTNO
base = 0x20410000; size = 64K; rwx = rx # FLASH Zone2
base = Ox80001000; size = 16K; rwx = rw # RAM Binary
base = ©x10025000; size = ©x100; rwx = rw # PWM (ELF/HEX)
base = 0x10012000; size = 0x100; rwx = rw # GPIO ' ' ' .
base = 0x0C0000LO; size = Ox400000; rwx = rw # PLIC Zone3
Bina .
Zone = 2 . Hex Five l Secure
ir = 17, 18 # BTN1l, BTN2 8
bage = 0x£0420000; size = 64K; rwx = rx # FLASH Tool Chain - BOOt
base = 0x80005000; size = 16K; rwx = rw # RAM Zone 4 EXtenSiOn - .
base = Ox60000000; size = 8K; rwx = rw # XEMACLITE Binary o F|rmware
(ELF/HEX)
Zone = 3
base = 0x20430000; size = 64K; rwx = rx # FLASH ' ' ' '
base = 0x80009000; size = 4K; rwx = rw # RAM
nanoKernel
Zone = 4
base = 0x20440000; size = 64K; rwx = rx # FLASH
base = Ox8000A000; size = 4K; rwx = rw # RAM
base = 0x10013000; size = 0x100; rwx = rw # UART o
Policies
(multizone.cfg)
Plain Text ~ Tab Width: 3 ~ Ln 10, Col 1 - INS — e —

Patent pending US 16450826, PCT US1938774 — Configuring, Enforcing, And Monitoring Separation Of Trusted Execution Environments.

~ HEX-Five Security

MultiZone™ For Linux — Enclave Concept

Hardware-enforced Software-defined Boundaries —p
Enclave #1 Enclave #2 Enclave #3 Enclave #4

App App App App

[bare metal] [bare metal] [bare metal] [bare metal]

UART Driver PWM LED Driver

| MultiZone™ Secure Communications |

MultiZone™ nanoKernel

RV64 IMACU

Linux User Land Apps |II

4 x SMP Linux I

MultiZone™ |PC Driver Ethernet Driver

MultiZone™ |PC

RvV64 IMACFU I

Multiple statically defined enclaves — ram, rom, i/o, irq
Secure messaging with no shared mem - secure buffers for Linux IPC

Secure interrupt handlers mapped to enclaves and executed in U-mode

AR

Trap & emulation of privileged instructions, Soft—timers, Secure boot

~ HEX-Five Security

Takeaways

= Embedded systems — with or without MMU -
are inherently not secure as all code can

access all data and peripherals

= The RISC-V ISA defines some security building
blocks including privileged modes and physical

memory protection

= The design complexity associated with properly
implementing security primitives often results in

them not being used at all

Multizone ™ security provides
multiple equally secure execution
environments

MultiZzone ™ provides hardware—
enforced software—aefined separation
for programs aata and /0

Multizone ™ Security doesn’t require
additional cores, specialized IP or
changes to existing applications

~ HEX-Five Security

\\

_, I’ﬁL

Hex Five MultiZone™ Security

Hex Five Security, Inc. is the creator of MultiZone™ Security, the first Trusted Execution Environment for RISC-V.

Hex Five open standard technology provides software-defined hardware-enforced separation for multiple security

domains, with full isolation of data, programs and peripherals. Contrary to traditional solutions, MultiZone™ Security
H EX requires no additional hardware or changes to existing software: open source libraries, third party binaries and legacy

code can be configured in minutes to achieve unprecedented levels of safety and security.

MultiZone™ Open Standard APl — C Library

/* Copyright(C) 2019 Hex Five Security, Inc.

Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the

above copyright notice and this permission notice appear in all copies.

*/

#ifndef LIBHEXFIVE_H_
#define LIBHEXFIVE_H_

void ECALL_YIELD();
void ECALL WFI();

int ECALL SEND(int, void *);
int ECALL RECV(int, void *);

void ECALL_TRP VECT(int, void *);
void ECALL IRQ VECT(int, void *);

void ECALL_CSRS MIE();
void ECALL CSRC MIE();

void ECALL CSRW MTIMECMP(uint64_t);

“Uintb4_t ECALL CSRR MTIME();

uint64_t ECALL_CSRR_MCYCLE();
uinté4_t ECALL CSRR MINSTR();
uint64_t ECALL CSRR_MHPMC3();
uinté4_t ECALL CSRR MHPMC4();

uint64_t ECALL CSRR MISA();

uint64_t ECALL_CSRR_MVENDID();
uint64_t ECALL_CSRR_MARCHID();
uint64_t ECALL CSRR MIMPID();

kEint64_t ECALL_CSRR_MHARTID();

#endif /* LIBHEXFIVE H_ */

m HEX-Five Security

)

T 111

Permissive Licensing — “any purpose”

Hardware threads (zones) management
Inter zone messaging — zone0 SMP Linux

Traps & IRQs handlers registration (U-mode)

Traps & IRQs enable / disable — per zone
Hardware thread timer — per zone

Trap & emulation helpers
Read-only, selected CSRs
Completely optional — just for speed / latency

Virtual Memory (MMU) Uncomfortable Truth

~/Tinux-4.18.6% cloc --exclude-Tlang=DTD,Lua,make .

60965 text Files. (a) Industry Average: "about 15 - 50 errors per 1000 lines of delivered code." He further
60546 unique files. says this is usually representative of code that has some level of structured programming
14391 files ignored. behind it, but probablyincludes a mix of coding techniques.

Language files blank comment code (b) Microsoft Applications: "about 10 - 20 defects per 1000 lines of code during in-house

"" testing, and 0.5 defect per KLOC (KLOC IS CALLED AS 1000 lines of code) in released

c 25782 2554166 2248398 12965944 d M 1992)." H ib hi bi . fcod di hni

C/C++ Header 18693 284773 897818 3620746 product(Moore)." He attributes this to a combination of code-readingtechniques

Assembly 1318 47155 105960 232515 and independenttesting (discussed further in another chapter of his book).

JSON 189 0 0 102201

;?»:;I-ne shell 322 246%: Zggg %Zi?g (c) "Harlan Mills pioneered 'cleanroom development', a technique that has been able to

Python 108 3055 3337 17427 achieve rates as low as 3 defects per 1000 lines of code duringin-house testingand 0.1

HTML 3 669 0 5492 defect per 1000 lines of code in released product (Cobb and Mills 1990).

yacc 9 701 375 4648

Tex 8 326 314 2007

C++ 7 285 77 1844 * 4 . .

Bourne Again shell 51 351 318 7+ 17,019,619 * 10° =1,701 disasters waiting to happen

awk 11 170 155 1384

Markdown 1 220 0 1077

TeX 1 108 3 915

NANt script 2 156 0 599

Windows Module Definition 2 14 0 102

m4 1 15 1 95

XSLT 5 13 26 61

css 1 18 27 44

vim script 1 3 12 27

Ruby 1 4 0 25

INI 1 1 0 6

sed 1 2 5 5

SUM 46599 3103252 17019619

Credits: Al Danial https://github.com/AlDanial/cloc, Dan Mayer's development blog https://www.mayerdan.com/ruby/2012/11/11/bugs-per-line-of-code-ratio

HEX—Five Security

